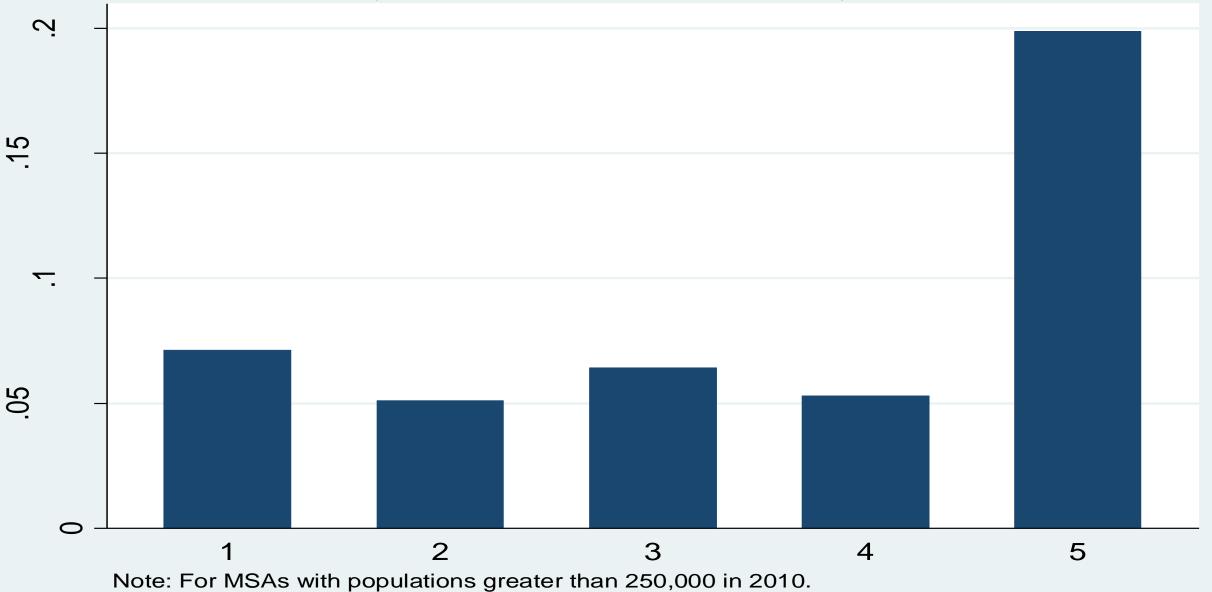
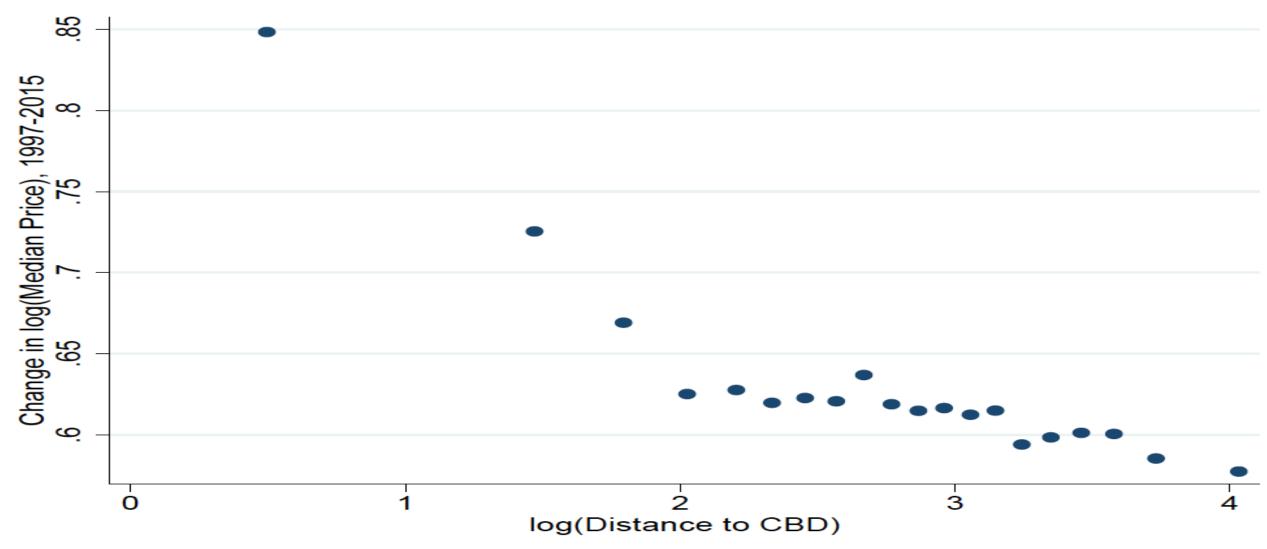


Source: Eurostat

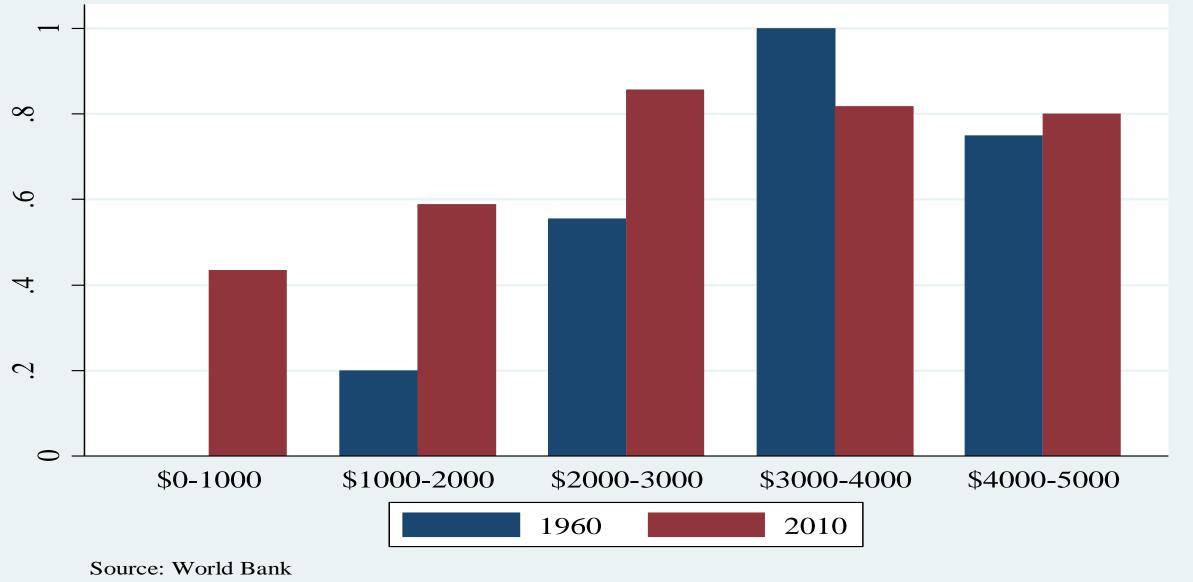
Change in FHFA, 1996-2012 by Quintile of Population Density, 2010



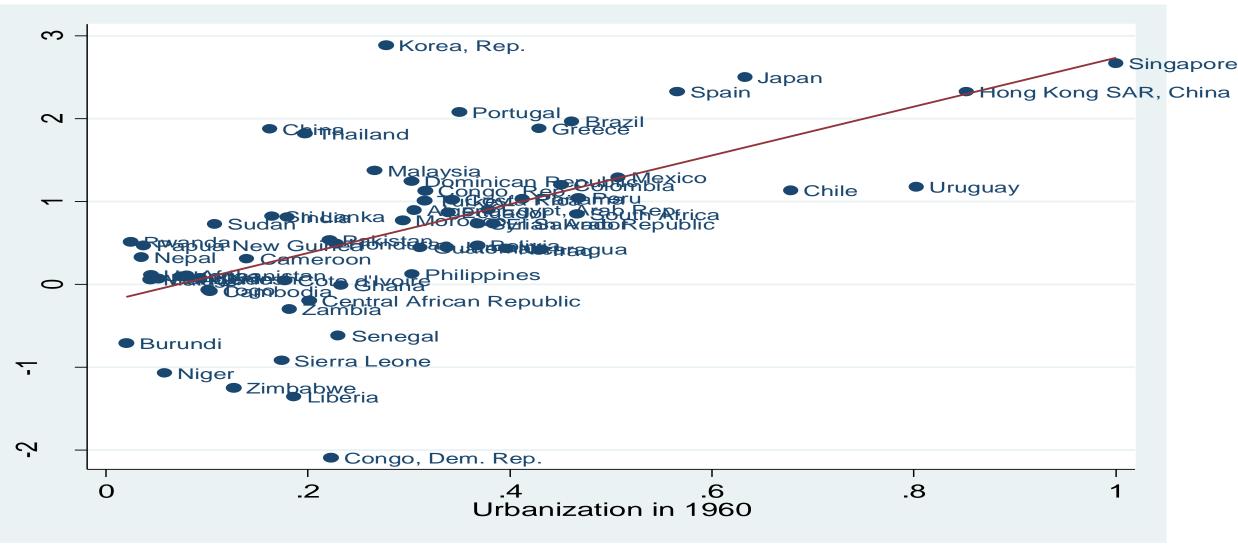
The Great Pro-City Price Tilt (U.S.)



Share of Countries over 1/3 Urbanized, by GDP per Capita (2012 \$) 1960 and 2010

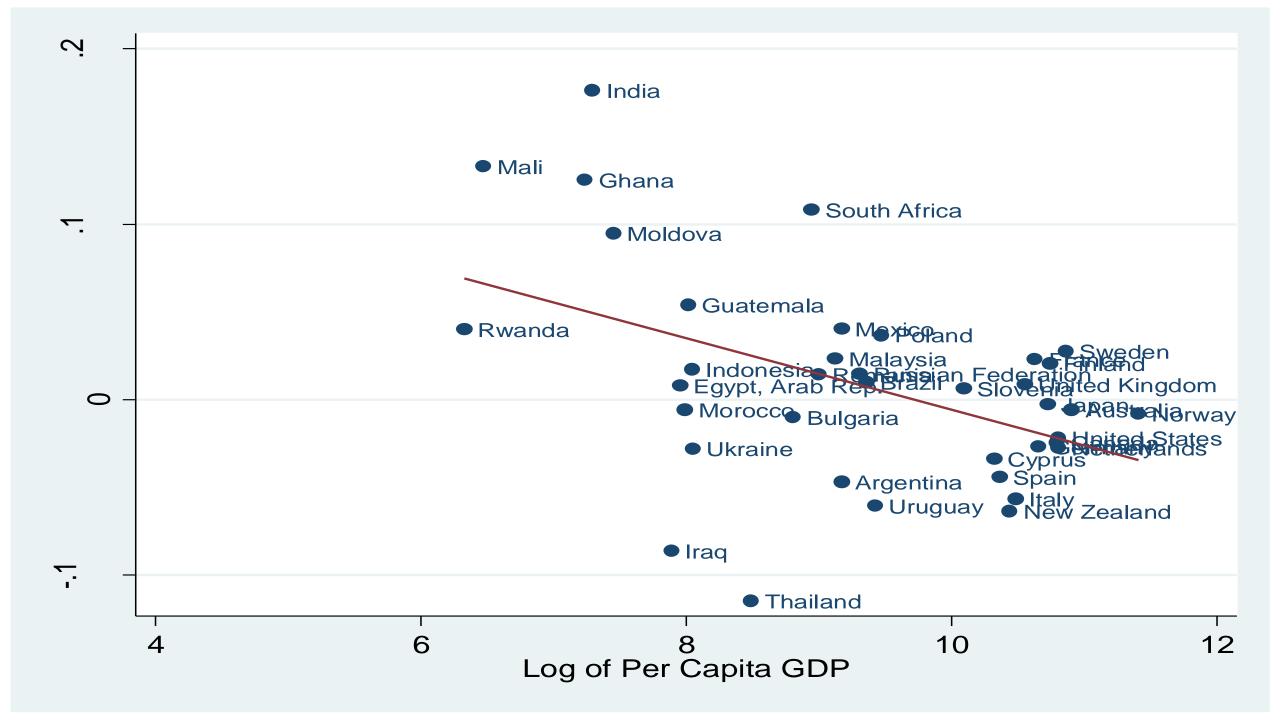


Per Capita GDP Growth 1960-2010 (Poor Countries<\$5000 PC GDP)



"I regard the growth of cities as an evil thing, unfortunate for mankind and the world."





The Urban Triad

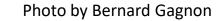
The Economic Magic of Human Interaction by David Stanley (Flea Market)

Government battling the Demons of Density

The Physical City by rulto

Technology and the City

TIL



Centripetal Skyscrapers

Until nearby commercial structures began to dwarf it in 1890, Trinity Church had been New York's tallest building for forty years. The two buildings to the church's left held that honor for thirty years until they were destroyed in a terrible attack that ultimately illustrated the resilience of a great city.

Jeff Greenberg/ World of Stock

The Chicago Home Insurance Building, built in 1885, is widely considered the world's first metal-framed skyscraper. This technology would come to dictate the shape of most cities in the twentieth century and beyond.

Chicago History Museum/Getty Images

Centrifugal Cars (and Radios and TVs)

Cars and Highways Killed Urban Industry

Liverpool in the 1980s

Photo by David Sinclair

So Why Didn't These

Image by ChtiTux

Image by Danamania

Kill Finance and Urban Information Industries

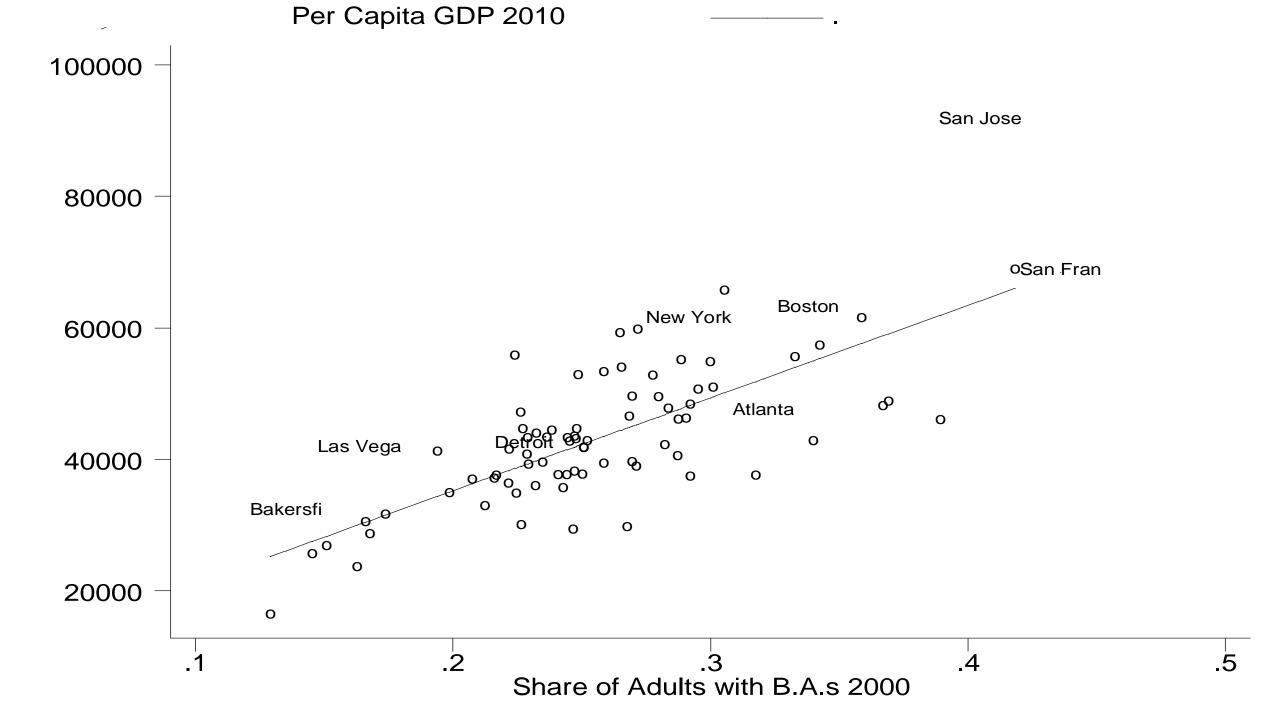
Photo by Runner1928

The 21st Century Urban Edge: Knowledge

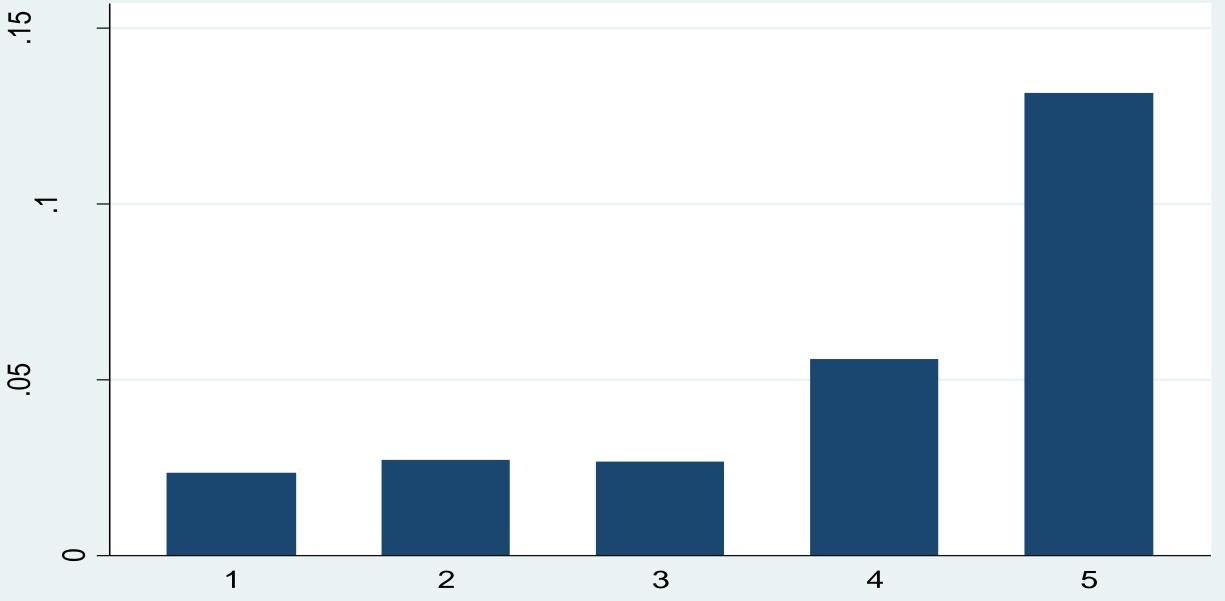
Will the last person to leave Seattle (and Milan) please turn out the lights?

Photo by Daniel Schwen

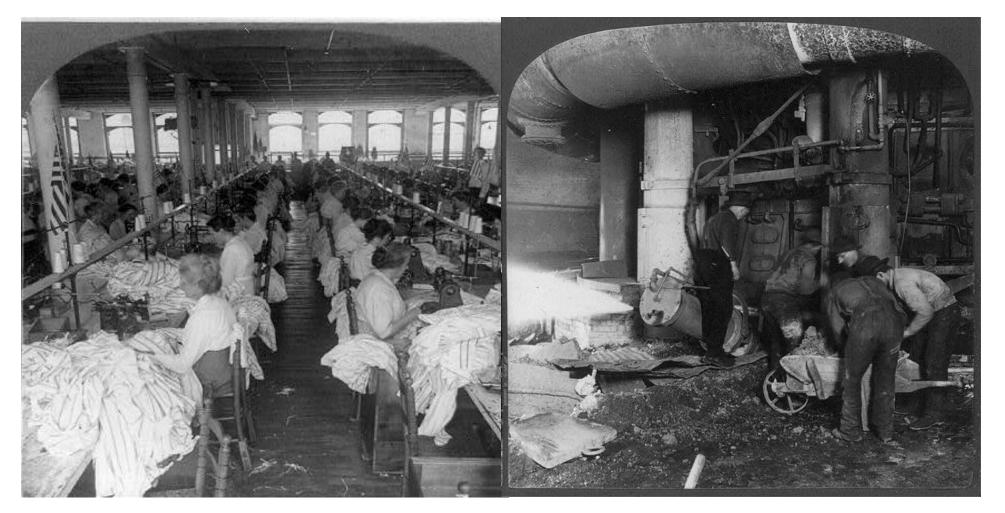
Photo by Sky_HLV



Average Population Growth by Share with BA in 2000 (Quintiles)

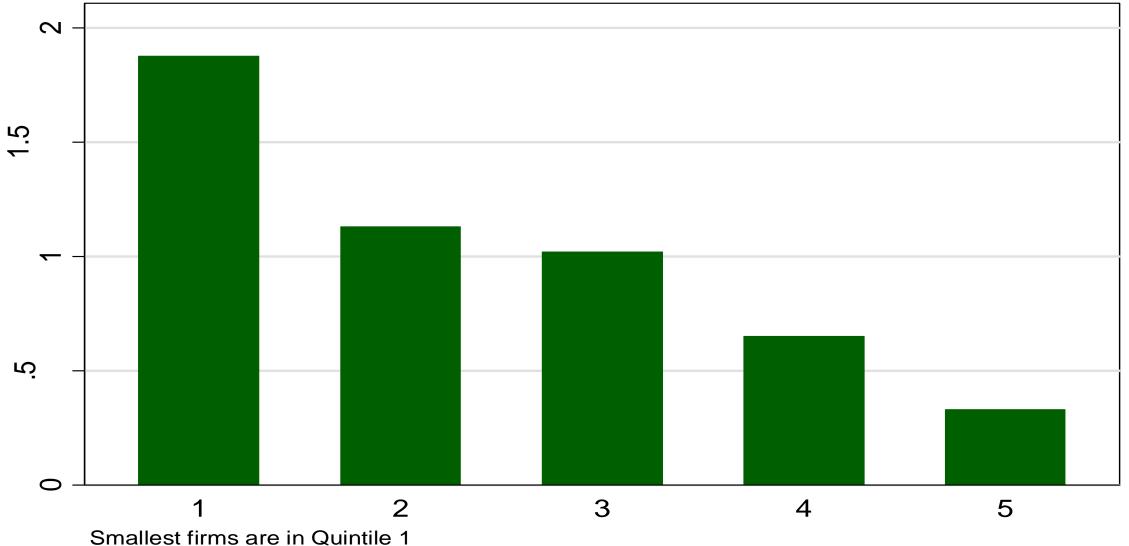


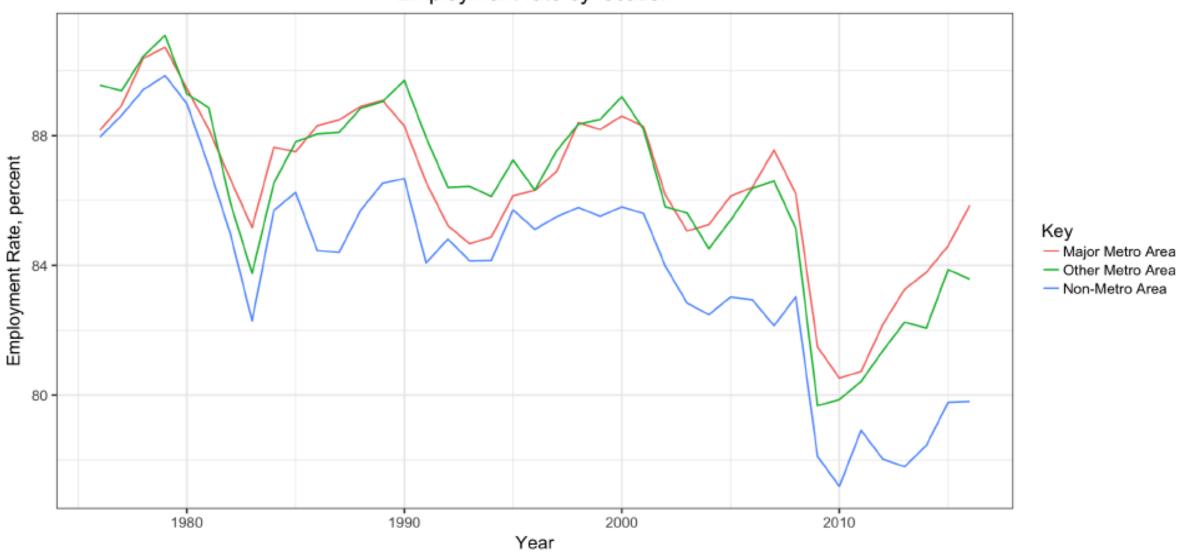
Chinitz: Contrasts in Agglomeration: New York and Pittsburgh



Economic Growth and Firm Size

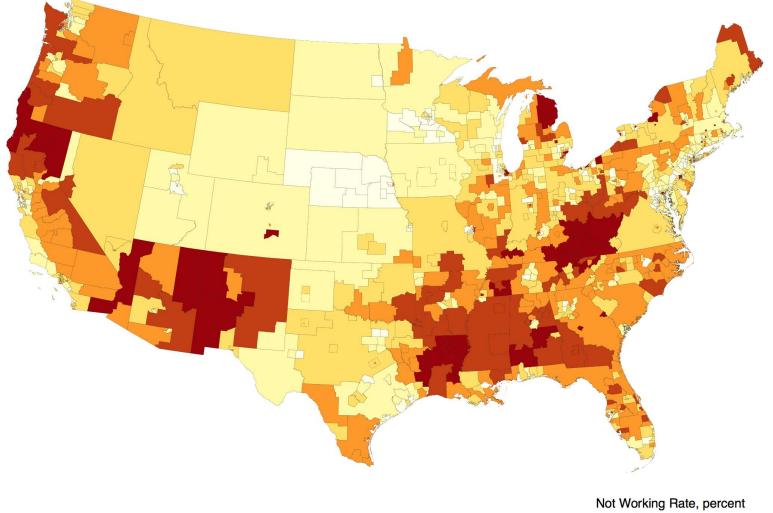
MSA Employment Growth (1977-2010) by Average Firm Size (1977) Quintiles



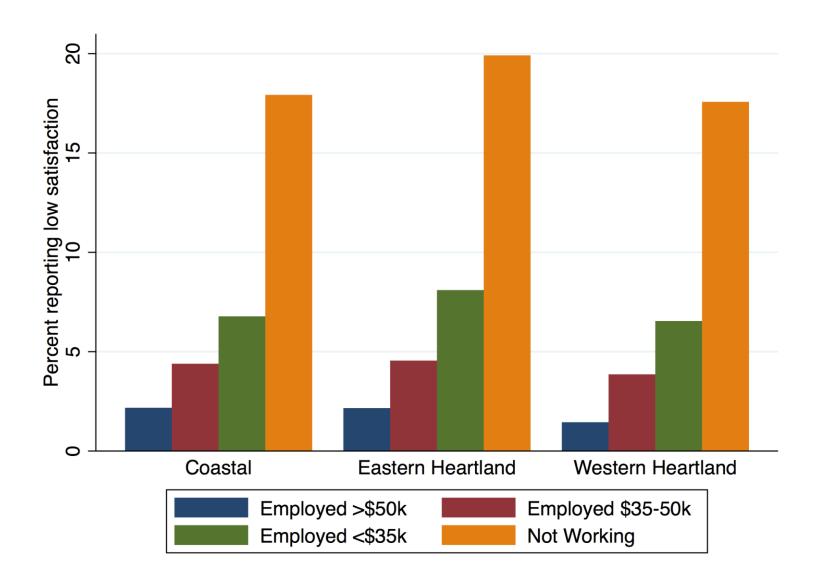


Employment rate by location

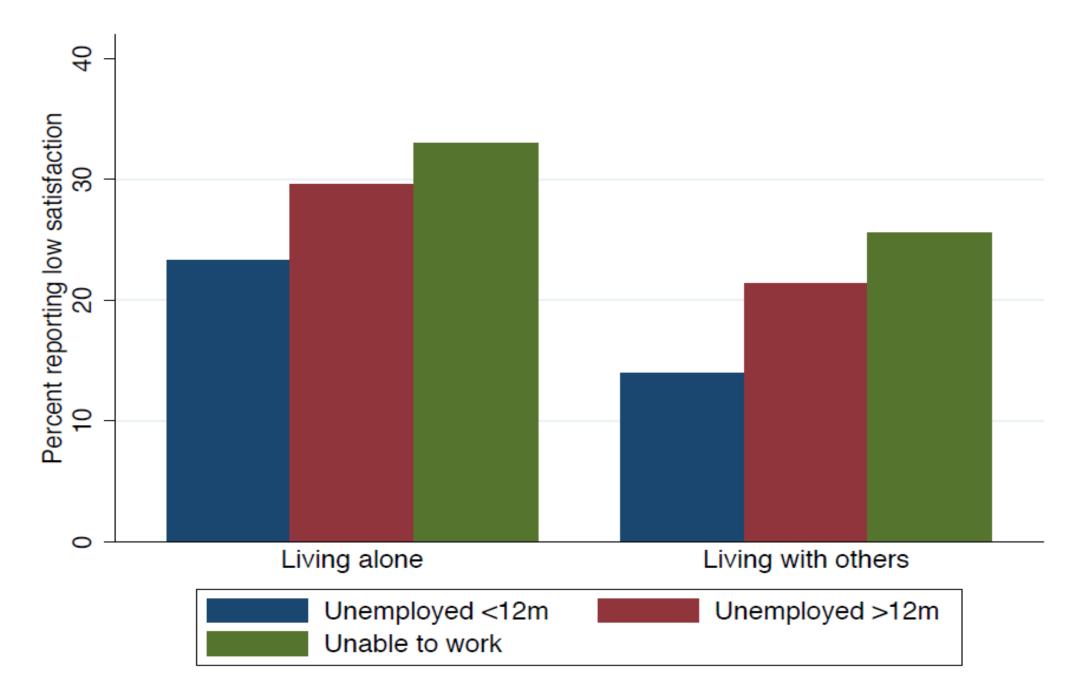
Geography of Jobless America: Prime Aged Men 2015



Low life satisfaction of not working men



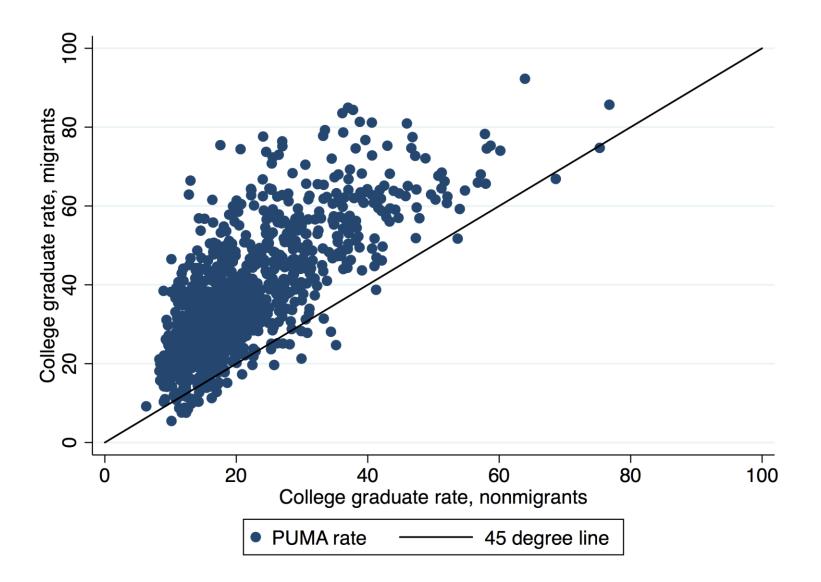
Prime men, 2005-2010



Changes in the U.S.

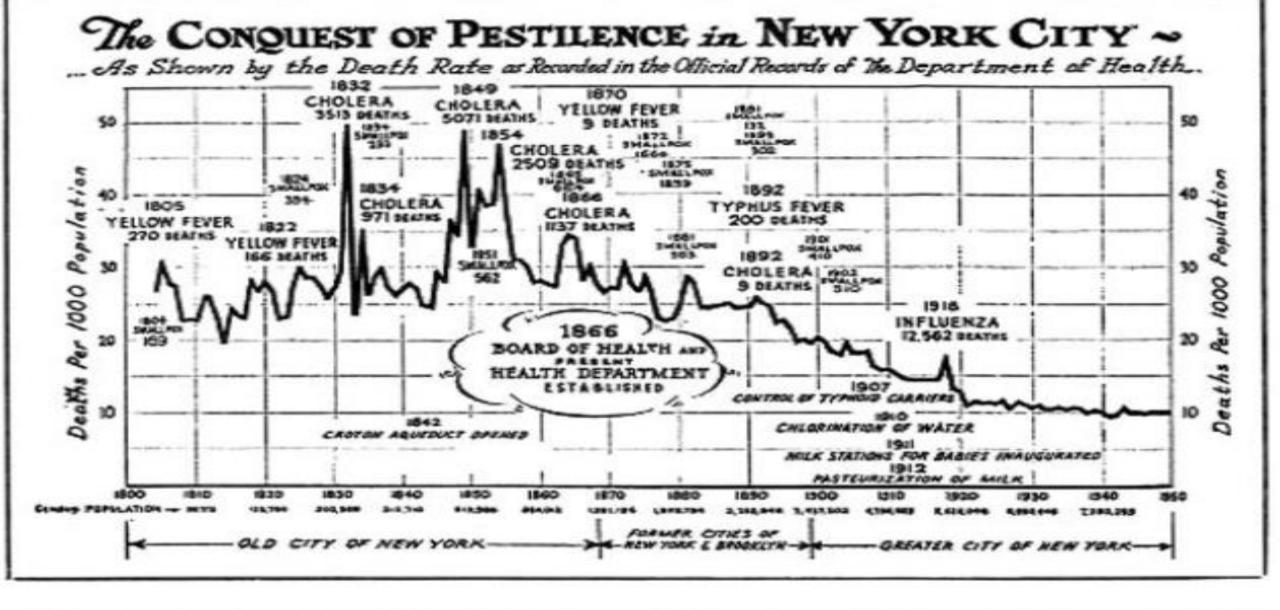
- Migration has declined and (especially migration of the less skilled) is not directed towards high wage areas (Ganong and Shoag, 2017)
- Successful areas make it increasingly difficult to build low cost housing (Glaeser, Gyourko, Saks, 2005), leading to spatial mismatch (Hsieh and Moretti, 2016).
- Change in share with college degrees positively correlated with initial share of population with college degrees (Moretti, 2004).
- Income convergence across metropolitan areas or PUMAs has slowed or disappeared entirely (Berry and Glaeser, 2006)
 - $Log(Y_{2010}/Y_{1980})=.02* Log(Y_{1980})$ (IV with 90th and 10th percentile in 1980).

Skilled migration



Saving Depressed (Rural) Places

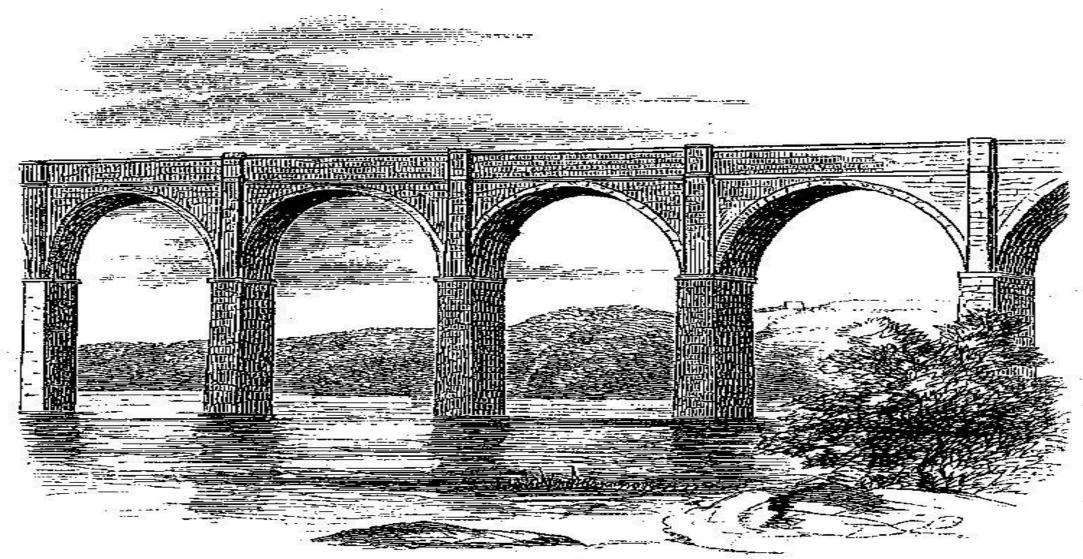
- Don't Artificially Push Economic Activity Away from Successful Cities.
 - Help poor people not poor places.
- Infrastructure is usually a bad solution for declining places.
 - Cost-Benefit Analysis not place-making.
- Reduce the social problems for the people who are left behind.
- Joblessness is a particularly terrible curse with real externalities.
 - Targeted and experimental vocational training.
 - Social welfare policy reform that favors work.
 - Robust employment subsidies that are higher in areas where the employment rate is more elastic.



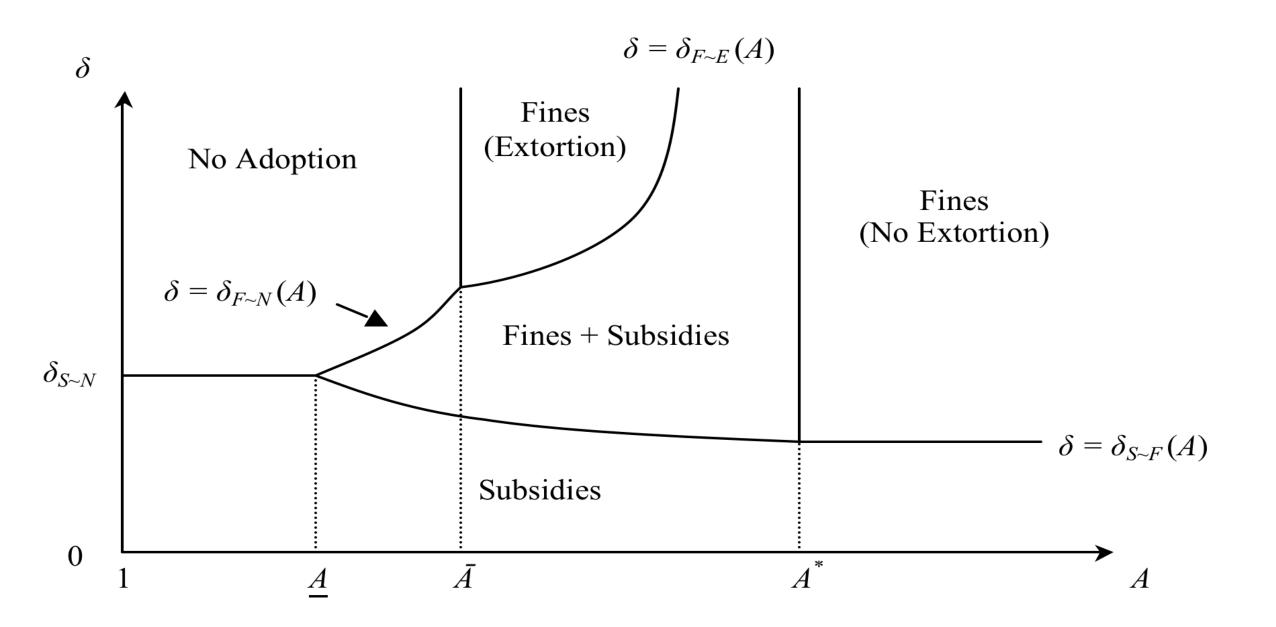
New York City's Department of Health shows the timeline of the city's mortality rate, which sharply dropped with the provision of clean water in the nineteenth century.

New York City Department of Health and Mental Hygiene

Incentives and Infrastructure



SECTION OF THE HIGH BRIDGE OVER THE HARLEM RIVER.



I allel A. Respiratory infections							
Dependent Variable:	Number of Cases						
Age:	All	Under 1	1-5	Over 5			
Days of Supply Issues	2.40	.61	.89	.90			
	$(.91)^{***}$	$(.29)^{**}$	(.32)***	$(.47)^{*}$			
Observations	1,230	1,230	$1,\!230$	1,230			
Mean of DV	461.9	97.8	147.7	216.4			
1 Std. Deviation Increase Effect	56.9	14.5	21.1	21.3			
Observations	1,230	1,230	$1,\!230$	1,230			
Panel B: Measles							
Dependent Variable:	Number of Cases						
Age:	All	Under 1	1-5	Over 5			
Days of Supply Issues	.035	00003	.0047	.030			
	$(.010)^{***}$	(.0035)	(.0084)	$(.0077)^{***}$			
Mean of DV	4.65	.590	2.02	2.04			
1 Std. Deviation Increase Effect	.83	0071	.11	.71			
Observations	1,230	1,230	$1,\!230$	1,230			

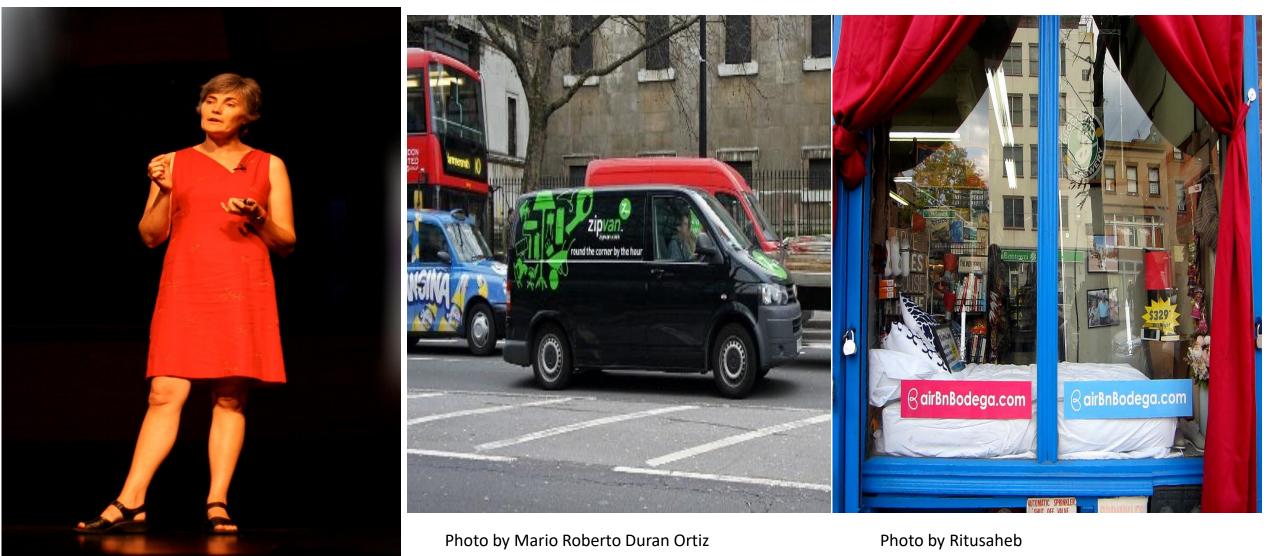
Panel A: Respiratory Infections

Metering and Water Supply Problems

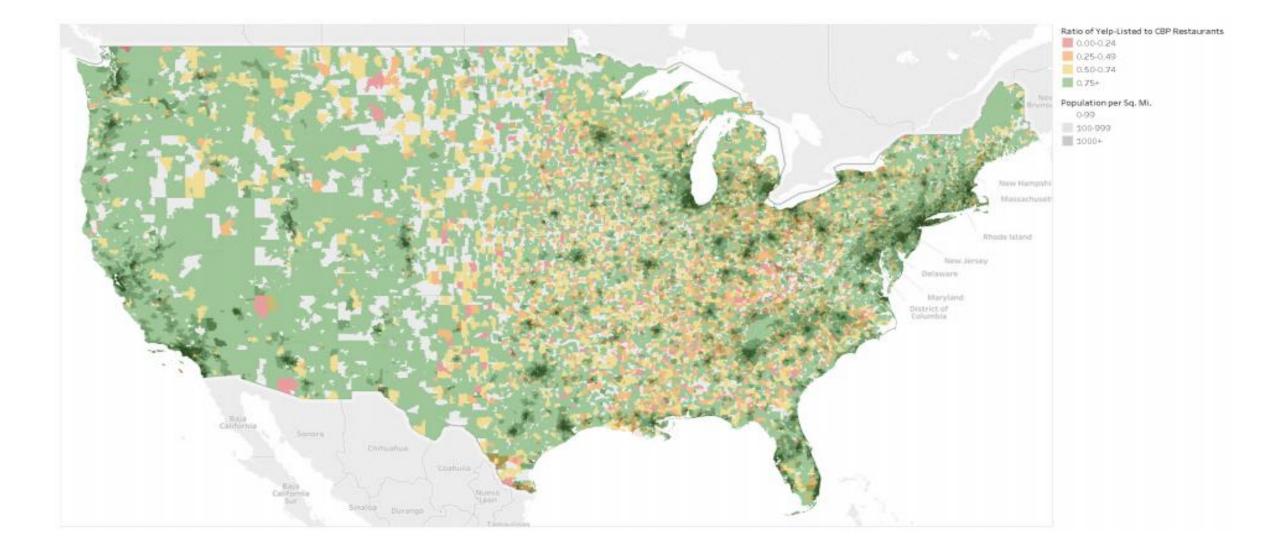
U	(1)	(2)	(3)	(4)	
	Average	% Metered	Peri-	Population	
	Consumption	Connections	Urban	Density	
Days of supply issues	192	416**	.484***	.165	
Days of supply issues (normalized by total connections)	060	365**	.092	146	
Days of Supply Issues (normalized by account complaints)	046	<mark>5</mark> 05***	.265*	041	
Fraction days with at least one supply complaint	349**	397***	.299*	096	
Mean	197.3	.548	.275	$7,\!015$	

Engineering vs. Economics: Singapore

Technological Change and the City: Zipcar, Airbnb: Autonomous Vehicles



Yelp Coverage of Restaurants in 2015

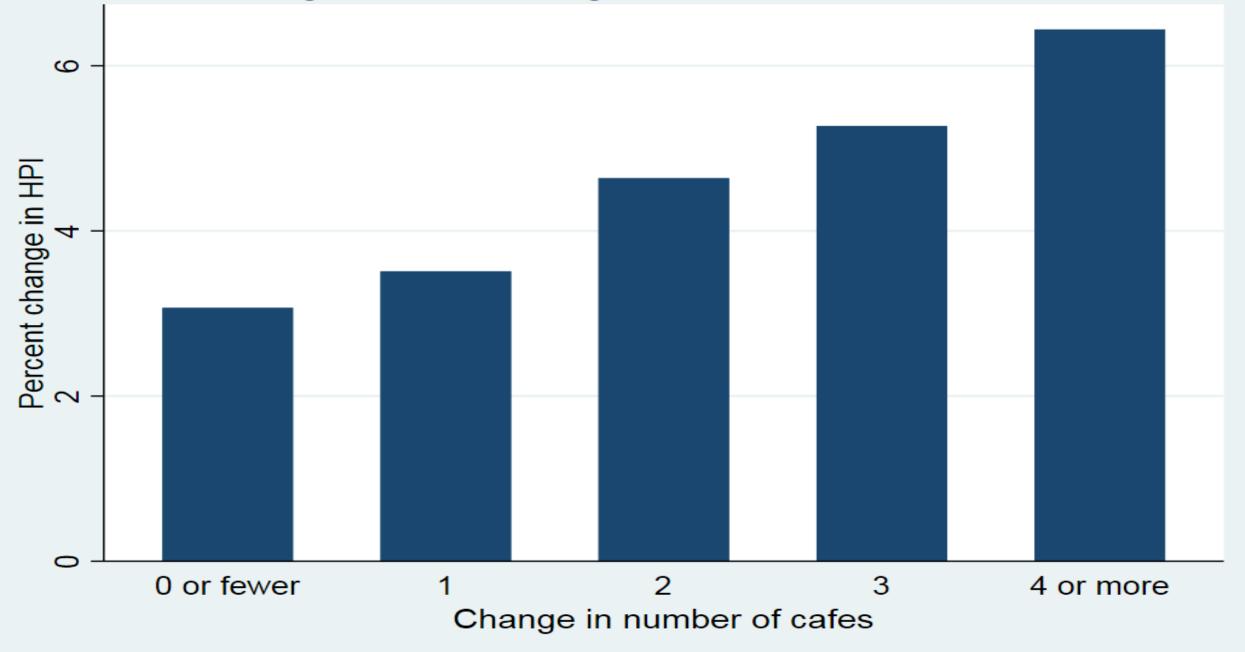


	Population Density		Income		Education	
	High	Low	High	Low	High	Low
R-squared	0.244	0.056	0.328	0.149	0.291	0.064
Out-of-bag R-squared	0.194	0.029	0.256	0.075	0.234	0.023
Mean Absolute Error	12.731	3.922	9.806	6.997	11.111	5.593
Mean Squared Error	427.918	42.065	292.104	186.273	363.237	110.182
Median Absolute Error	7.966	2.492	5.0785	3.476	6.030	3.034
Mean CBP Growth	6.799	0.494	6.106	1.370	6.453	0.900
St. Dev CBP Growth	20.484	6.485	17.654	13.011	19.137	10.153
Observations	42644	42648	41548	41552	42224	42568

Nowcasting Gentrification

- Cities are wracked with the agonies of success
 – but data on
 gentrification often appears with a lag.
- Can Yelp nowcast housing price increases, demographic change and the physical change of each neighborhood?
 - We do demographic change for NYC and a few other large cities.
- This also creates a snapshot of what gentrification looks like.

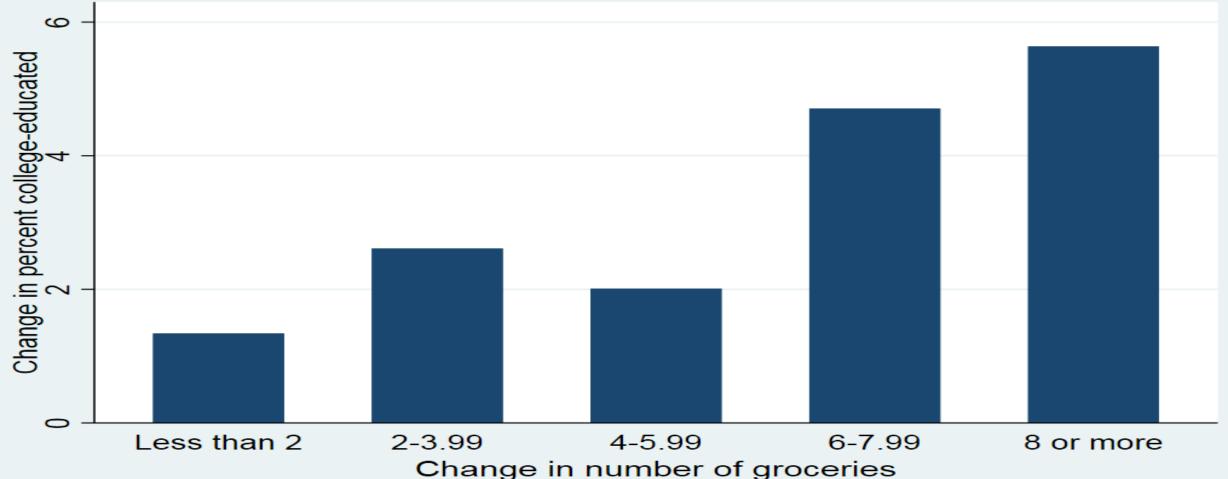
Change in HPI vs. change in number of cafes, 2012-2016



	(1)	(2)	(3)
		% Change in HPI	% Change in HPI
Yelp Starbucks Growth (lag1)	0.482***		0.291***
	(0.087)		(0.079)
Yelp Starbucks Growth (lag2)	0.260***		0.155*
	(0.070)		(0.066)
% Change in HPI (lag1)		0.324***	0.323***
		(0.013)	(0.013)
% Change in HPI (lag2)		0.076***	0.076***
		(0.011)	(0.011)
Constant	-0.890***	0.900***	0.835***
	(0.060)	(0.065)	(0.068)
Year FE	Yes	Yes	Yes
Observations	24865	24819	24819
Adjusted R ²	0.239	0.332	0.333
All regressions include a full set of cal p<0.10, ** p<0.05, *** p<0.01.	lendar year dummies ar	nd cluster standard erro	rs at the ZIP Code leve

Nowcasting Demographics

Change in percent college-educated vs. change in number of groceries NYC, 2012-2016 5-year average vs. 2007-2011 5-year average

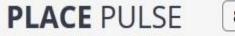


Nowcasting Demographics

	Change in percent of college educated	Change in percent of ages 25 to 34	Change in percent white	Obs.
Change in the number of groceries	0.352***	0.178*	0.189*	173
	(0.000002)	(0.019)	(0.013)	
Change in the number of laundromats	0.338***	0.200*	0.120	122
	(0.0001)	(0.027)	(0.187)	
Change in the number of cafes	0.319***	0.093	0.084	179
	(0.00001)	(0.216)	(0.264)	
Change in the number of bars	0.313***	0.140	0.114	176
	(0.00002)	(0.064)	(0.132)	
Change in the number of restaurants	0.270***	0.152*	0.098	180
	(0.0003)	(0.041)	(0.191)	
Change in the number of barbers	0.237**	0.197*	0.084	160
	(0.003)	(0.012)	(0.291)	
Change in the number of winebars	0.232**	0.143	0.144	136
	(0.007)	(0.097)	(0.094)	
Change in the number of convenience stores	0.222**	0.079	0.128	162
	(0.004)	(0.320)	(0.104)	
Change in the number of fastfood	0.200**	0.024	0.046	173
	(0.008)	(0.758)	(0.544)	

Street-level Imagery

- Images of streets collected by vehicle-mounted cameras
- Accompany maps in interactive web interfaces
- Google Street View, Microsoft Streetside, Tencent (China), Wonobo (India)

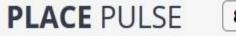


808,790 clicks

Which place looks safer?

pulse.media.mit.edu Salesses, Schechtner, and Hidalgo (2013)

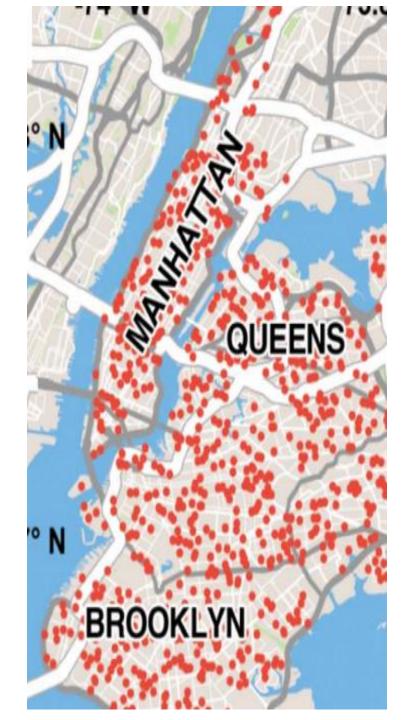
Crowdsourced urban appearance survey



808,790 clicks

Which place looks safer?

4,000 Images From New York, Boston, Linz and Salzburg More than **8,000** Unique Participants from **91** countries More than **200,000** Pairwise Comparisons



#Total Street blocks ~1,000,000

#Sampled Street blocks 1,700

This is Nikhil Naik's big innovation

Change in Streetscore is a proxy for more general change in the built environment

Naik, Glaeser, Hidalgo, Kominers, and Raskar

Predicting Change in Streetscore

Glaeser et al. (1995, 2009), Ciccone and Hall (1996), Bettencourt (2013)

	Coefficients for Streetchange 2007-2014				
Independent Variables	(4)	(5)	(6)		
Share College Education 2000	0.657^{***} (0.106)		0.703^{***} (0.105)		
Log Population Density 2000		0.056***	0.084***		
Streetscore 2007	0.027^{***} (0.010)	$(0.020) \\ 0.033^{**} \\ (0.014)$	$(0.024) \\ 0.013 \\ (0.012)$		

***p < 0.01, **p < 0.05, *p < 0.1

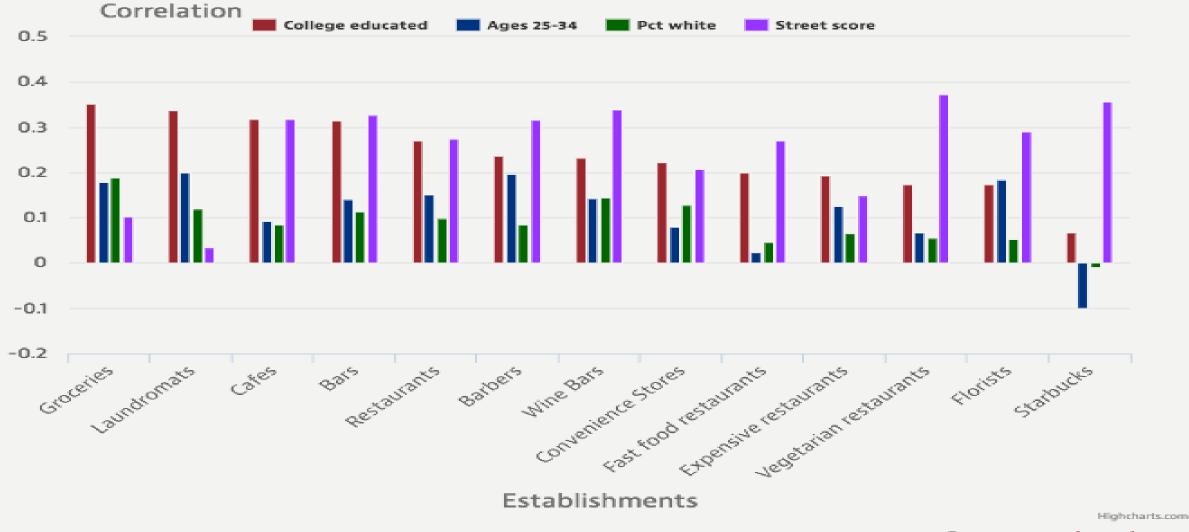
Population Density and College Education are strongest predictors of future growth in neighborhoods Controlling for race, income, age, housing costs etc.

The Slow Spread of Success

	Coefficients for Streetchange 2007-2014					
Independent Variables	(1)	(2)	(3)	(4)		
Distance to CBD	-0.042***	-0.050***	-0.051***	-0.036***		
	(0.011)	(0.011)	(0.011)	(0.011)		
Adjacent Streetscore 2007	0.063***			0.049**		
	(0.019)			(0.019)		
Adjacent Log Population Density 2000		0.115**		0.093**		
		(0.046)		(0.046)		
Adjacent Share College Education 2000			0.620***	0.626***		
			(0.167)	(0.172)		

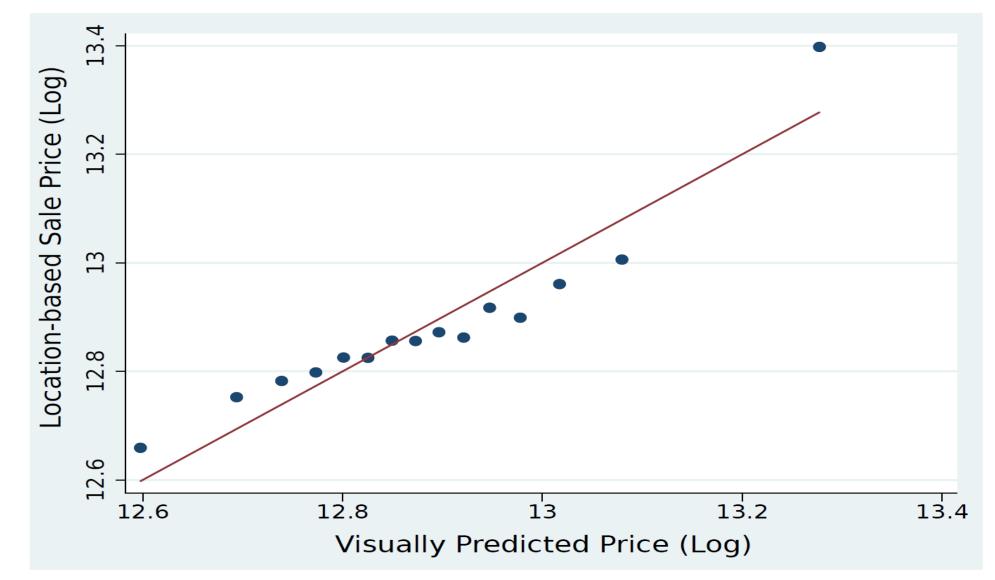
Signs of gentrification

The growth of certain types of businesses in a neighborhood can be early signs of gentrification on the horizon. Below are how increases in certain types of establishments were correlated with demographic changes and perceptions of safety in New York City.



Source: author data

Valuing Housing using Streetview Images



The Foreclosure Hypothesis

- It is well known that foreclosure brings in much less than the book value of the home.
- Campbell, Giglio and Pathak document the price impact of a forced sale.
- Some have claimed that the foreclosure effect is due to destruction of the physical home.
- We take Boston homes that were foreclosure from 2007-2009.
- We match with 5 nearest neighbors using a propensity score based either on initial visuals or initial visuals plus other characteristics (including location).
- We then compare the difference in visually-predicted price (Not Real Price).
- We find a 3-4 percent loss in Visual Value due to Foreclosure.

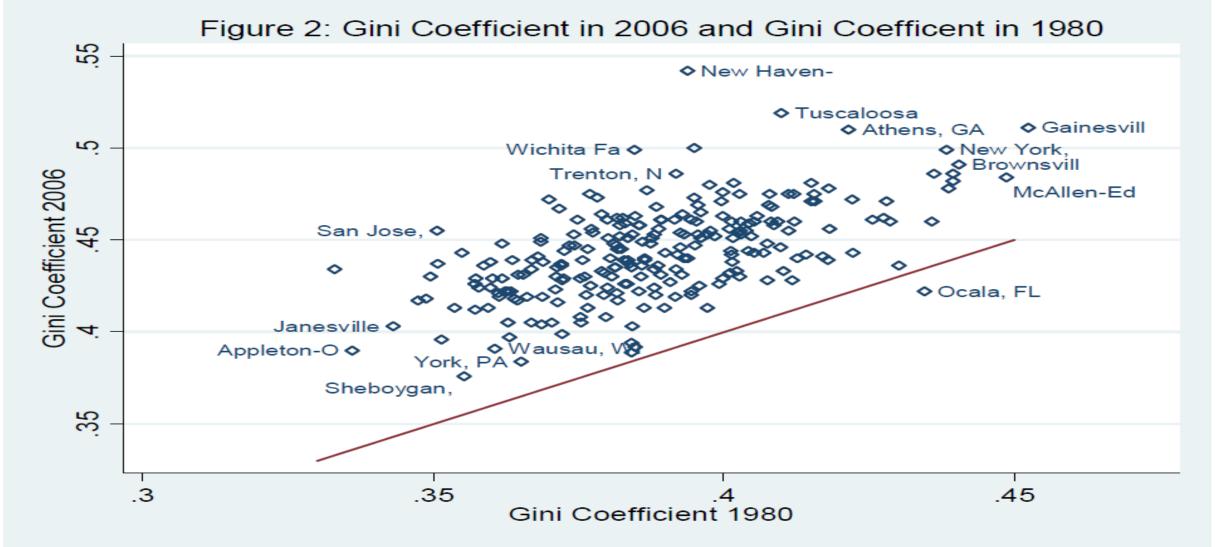
Matching Model	${f Treatment} \ (\# {f Samples})$	$\begin{array}{c} \text{Control} \\ (\#\text{Samples}) \end{array}$	Treatment (After–Before)	Control (After–Before)	Diff in Diff	Standard Error	Z-score
	(1) Effect	of Remodel	ing on Visually	-predicted Pric	e		
Vis. Index	1025	5576	0.017	-0.000	0.030***	0.011	2.75
Vis. Index $+$ Basic Features					0.041***	0.001	3.47
(2) Effec	t of Remode	ling on Visua	ally-Predicted I	Price (Single Fa	mily Homes	5)	
Vis. Index	424	2073	0.046	0.006	0.024	0.018	1.35
Vis. Index + Basic Features					0.049***	0.019	2.60
	(3) Effect	of Foreclosu	res on Visually	-predicted Pric	е		
Vis. Index	1256	3601	-0.018	0.003	-0.023***	0.008	-2.81
Vis. Index $+$ Basic Features					-0.030**	0.009	-3.16
(4) Effec	t of Foreclos	ures on Visu	ally-predicted I	Price (Unremod	leled Homes	;)	
Vis. Index	890	2788	-0.022	0.004	-0.024***	0.009	-2.60
Vis. Index $+$ Basic Features					-0.035***	0.011	-3.18
(5) Effec	t of Foreclos	ures on Visu	ally-predicted I	Price (Single Fa	mily Homes	5)	
Vis. Index	363	1987	-0.021	0.015	-0.032**	0.014	-2.22
Vis. Index + Basic Features					-0.040***	0.016	-2.46
(6) Effect of For	reclosures on	Visually-pre	edicted Price (S	ingle Family U	nremodeled	\mathbf{Homes})	
Vis. Index	281	1537	-0.021	0.017	-0.038***	0.015	-2.49
Vis. Index + Basic Features					-0.047***	0.019	-2.36

es: All price variables are in log dollars, residualized on location. In the Vis. Index matching model, a propensi e is constructed on the basis of a home's visually-predicted log price (based on Street View features). In t Index + Basic Features model, a neighborhood dummy, log living area, year built (normalized), and owr upied flag is added to the set of covariates used for matching. The table reports the Abadie–Imbens standa

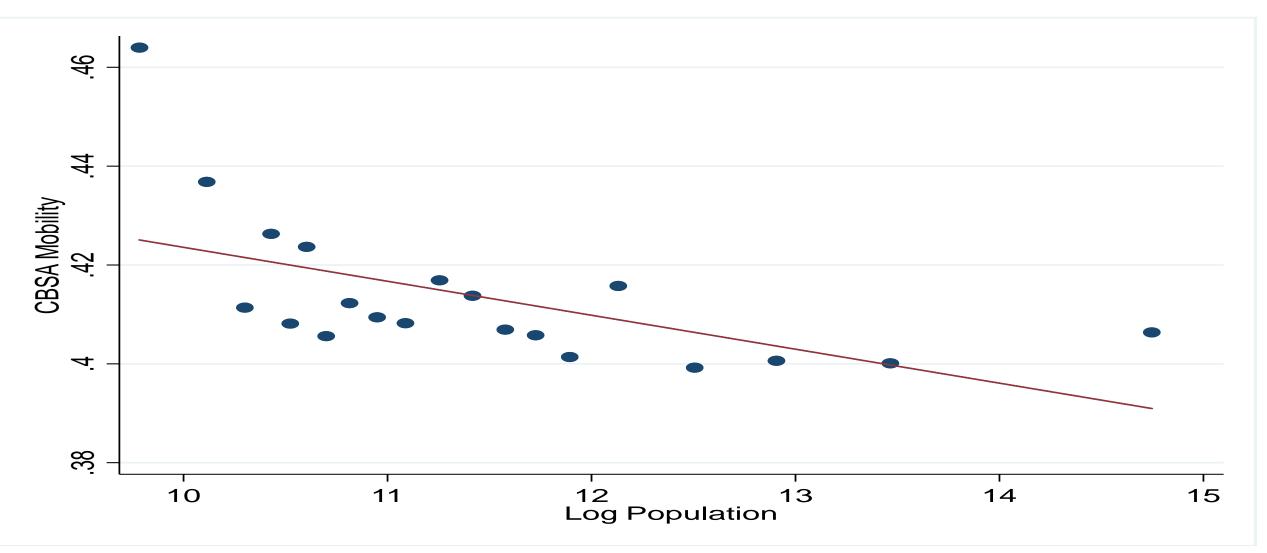
The Rise of the Consumer City

Picture by Mario Roberto Durán Ortiz)

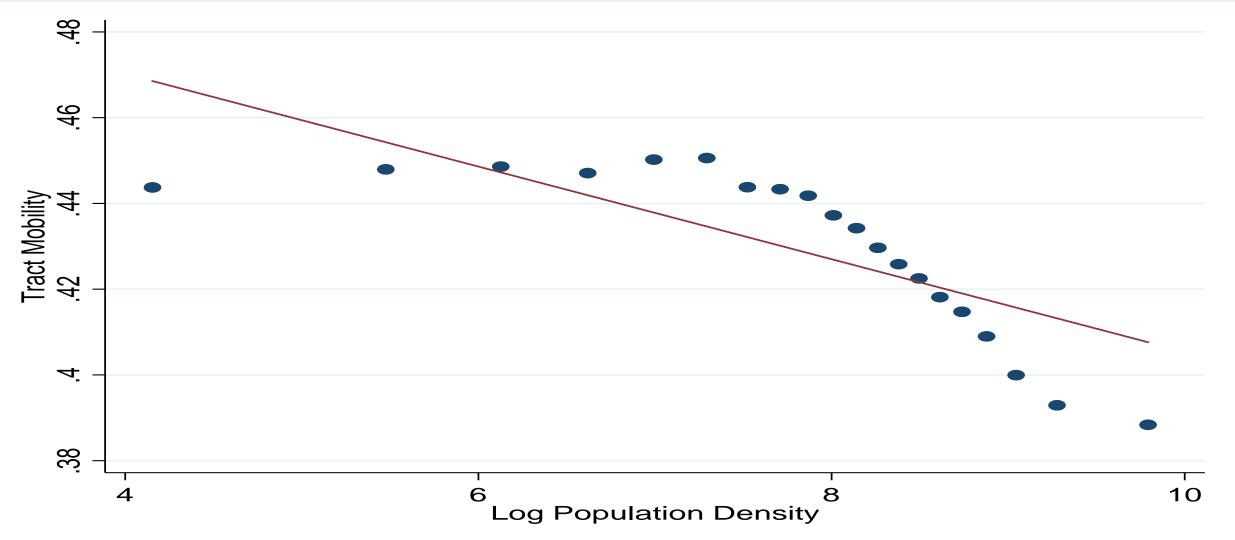
Agonies of Success: Inequality



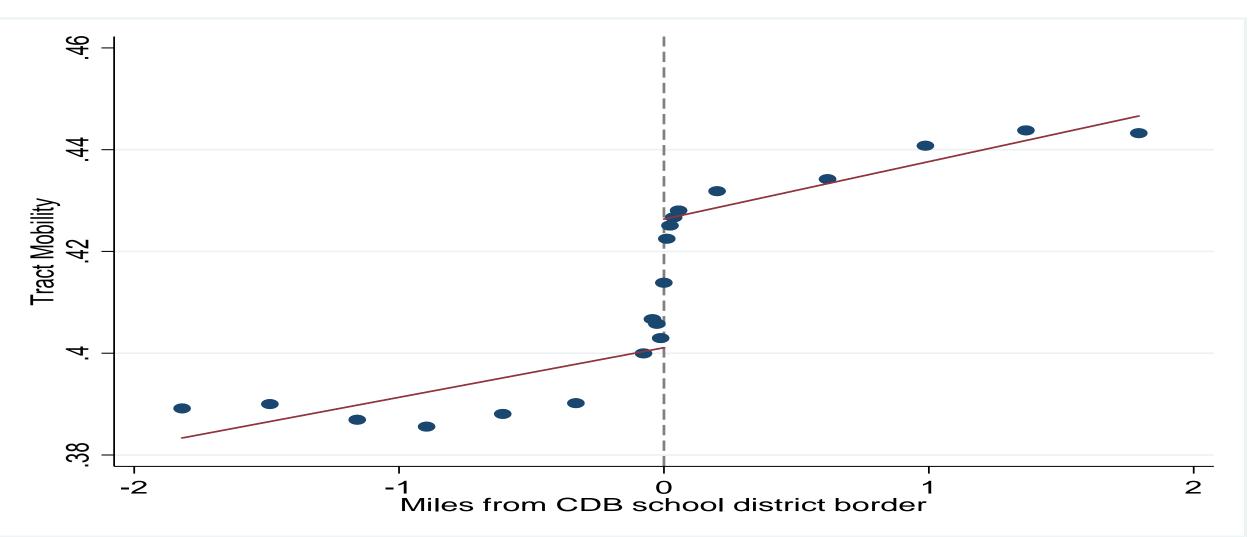
Chetty, Friedman, Hendren Linked IRS Data shows less upward mobility in dig cities



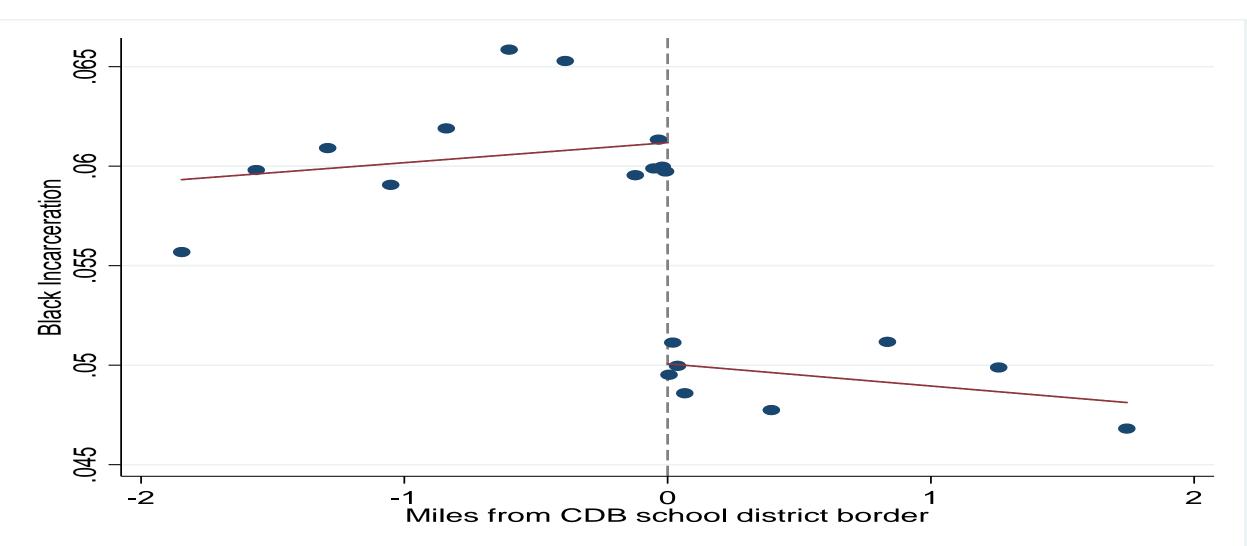
Tract Level Density and Upward Mobility across the United States with Metro Areas



Opportunity and Central City School Districts: Border Discontinuities



Adult Incarceration for African Americans and School District Border Discontinuities



Why are cities so good for productivity and so bad for opportunity?

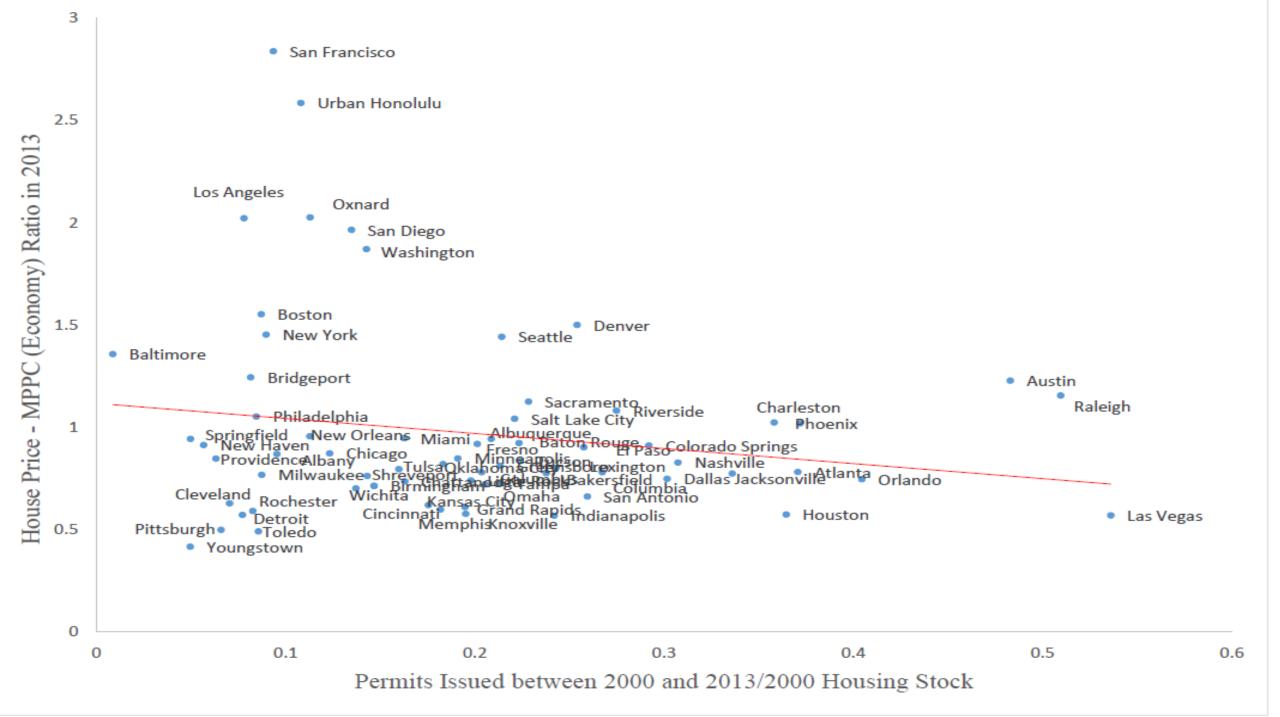
- Hypothesis # 1: Cities attract the poor, and this represents unobserved parental human capital that is potentially compounded by neighborhood effects and schools.
- Hypothesis # 2: Urban density permits interactions good and bad and these distract from human capital accumulation (children's crime and parental entertainment).
- Hypothesis # 3: Urban density enables more segregation and it is segregation that ultimately lowers upward mobility.

The Physical City: NIMBYism vs. Monumentalism

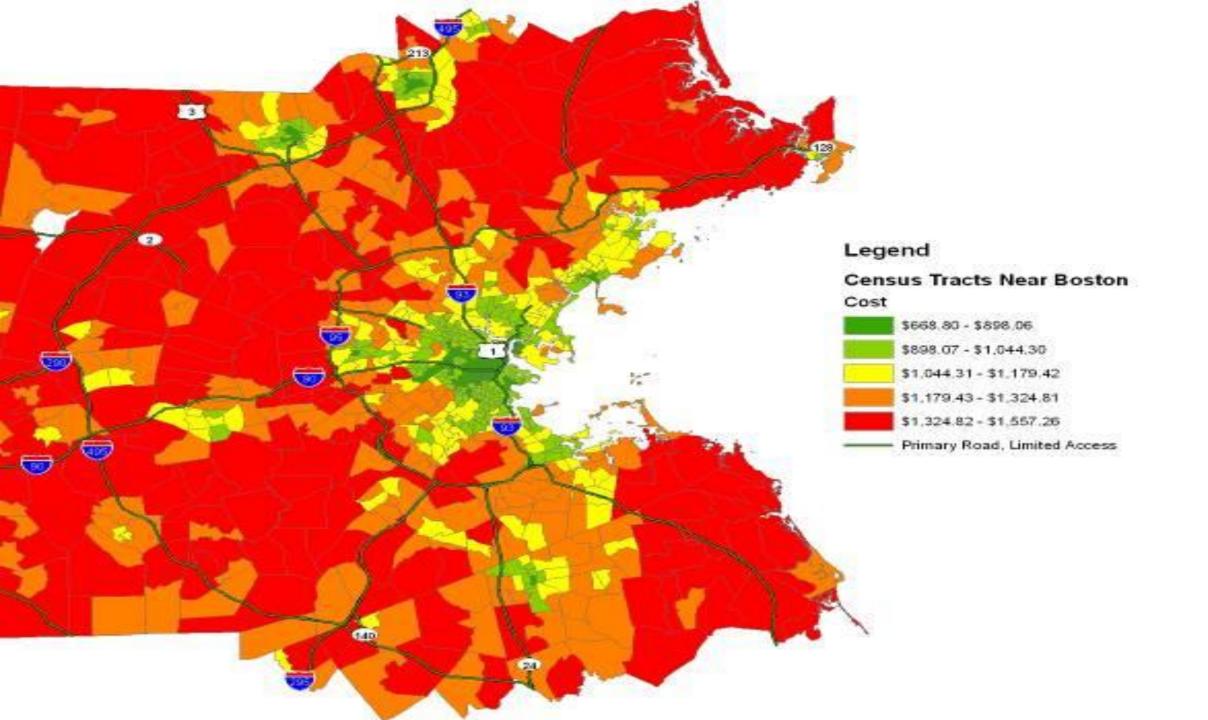
Mumbai has recently begun building up, but the city is still short, expensive, and congested because of decades of overrestricting height. *Scott Eels / Bloomberg / Getty Images*

Astana by ChelseaFunNumberOne -

Is Paris a Gated Community?



But Where Can Amsterdam Build?



The Boston/Amsterdam Hypothesis: Democracy, Urbanization and Inclusion

